![]() |
|
#11
|
|||||||
|
|||||||
|
Crummp, you are the expert on propeller aerodynamics. With your help, I've finally got the whole story.
In world war ONE, UK, Germany, USA developed RAF-6, Gottingen, and ClarkY airfoils for propellers respectively. These airfoils are "high drag high lift" conventianal airfoils. At the time, 2-blade fix pitch airscrew were used. Before WWII, people found it's nessesary to add the 3rd blade to absorb growing horsepower of engine. eg. Bf109B/D->Bf109E. When you add more blade, there are two contrary effects: 1)good thing: better power loading ability 2)bad thing: more drag At late 1930s, UK/USA/Germany engineers found it's almost no benifit from the 4th blade because the improvement on power loading is completely counteracted by drag increase added by the 4th blade. Allied tested RAF-6/ClarkY with 3-blade and 4-blade configration, drew that conclusion, German Mtt and Focke Wulf also tested , with same result. http://aerade.cranfield.ac.uk/ara/19...report-640.pdf Quote:
During late period of WWII, every country faced same difficulty: how to improve prop efficiency when more powerful engine equipped with aircrafts? German engineers found a clever method: use broad chord in 3-blade prop thus they could improve power loading while maintain lower drag than 4-blade. Result was quite good: Quote:
Quote:
Question: Since german 3-broad-blade obviuosly outperformed their old 3-blade design , so were allied new 4-blade prop. I've posted the proof of efficiency advantagde of P47's 4-blade hamilton over 3-blade. However, in late 1930s, allied reports on RAF-6/ClarkY already said there is little difference between 4 and 3 blade. What's the problem? The answer is lamimar airfoil developed during WWII, NACA-16 series. I agree with you with the difficulty maintaining of laminar effect in actual combat envirenments. OK, let's regard NAVA-16 as conventianal airfoil, that is, NACA-16 is "fake" laminar flow airfoil. The next question is: Is there enough difference between two kinds of conventianal airfoils? Of course. In an aerodynamics textbook says:"RAF-6 is suitable for taking off while ClarkY is better in criusing and high speed flight." Notice that there is only slightly section shape difference between RAF-6 and ClarkY. Therefore, being a vast different shape, NACA-16 behavior should be "special". But in some allied test, 3-blade NAVA-16 is even slightly worse than 3-blade ClarkY especially during taking off. Notice that the test speed is probably within 400MPH. Quote:
at high speed......how high? 0.7 Mach TAS? Is the NACA-16 the "new age ClarkY" just like Clark/RAF-6 comparation? that is to say, "new clarkY"--NACA16 is worse than old clark in taking off and better in REALLY high speed when propeller tip approching critical mach number? This is the key of mysterious diving performance difference. After WWII, as piston engine's power increased to 2400-3000HP, people impelmented 5-6 blade low drag NACA-16 airfoil to absorb it, and this configaration worked perfectly at high mach subsonic flight. This fact reminds us that whether the 4-blade NACA16 propeller outperforms 3-blade high drag/high lift wide-chord airfoils at high diving speed(=0.7mach or so)? There is small clue as Crummp said in 2005: Quote:
Quote:
http://digital.library.unt.edu/ark:/...dc63942/m1/40/ In my opinon, there is the possibility of 4-blade NACA16 greatly outperformed 3-broad blade at high diving speed(0.7 Mach). To prove this ,we need more data while crummp tons of resource will play the key role. Quote:
Last edited by BlackBerry; 05-18-2012 at 04:55 AM. |
|
|