Fulqrum Publishing Home   |   Register   |   Today Posts   |   Members   |   UserCP   |   Calendar   |   Search   |   FAQ

Go Back   Official Fulqrum Publishing forum > Fulqrum Publishing > IL-2 Sturmovik: Cliffs of Dover

IL-2 Sturmovik: Cliffs of Dover Latest instalment in the acclaimed IL-2 Sturmovik series from award-winning developer Maddox Games.

 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
  #20  
Old 05-29-2011, 10:39 PM
MadBlaster MadBlaster is offline
Approved Member
 
Join Date: Oct 2010
Posts: 666
Default

I read somewere a while back that the constant speed prop is based on oil hydraulics and aerodynamic forces on the prop from airspeed. Basically, the faster you go, the prop wants to run fine pitch from the aero forces, so to counteract that, there's a governor mechanism that runs off oil pressure to make it run course pitch. So you have the two forces constantly balancing to keep the rpms in range so the engine doesn't overspeed. So whether your running fine or course gears, its the same principle. It's a passive control more or less. Not like a variable pitch prop in manual mode ala 109.

Manifold pressure, I'll take a guess as I'm not a pilot either. I think it's just like a car. Natural aspirated, the engine creates vacume on the piston downstroke and sucks in the fuel/air mix. The higher the rmps, the more sucking power and the higher the manifold pressure. In supercharger setup, pump is belted somehow to the drive shaft and forces air/fuel into the manifold via a pump. I guess what the guys are saying up above to explain your observation about manifold pressure going up when prop pitch is changed to 'course' is that at high rpms, output of the supercharger pump somehow hinders the engine vacume (ala "law of diminishing returns"), causing it to be lower than it would be if the engine was naturally aspirated. So, it's a trade off when you use a supercharger. What you lose in power at the high end of the rpm scale you gain on the low end of the scale (i.e., higher manifold pressure at course pitch setting where the load on the prop in static state (no acceleration or deceleration) is highest).

Last edited by MadBlaster; 05-29-2011 at 10:50 PM. Reason: fix words
Reply With Quote
 


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT. The time now is 04:25 AM.


Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright © 2007 Fulqrum Publishing. All rights reserved.